INSTALLATION INSTRUCTIONS AND PARTS LIST
SEPARATED COMBUSTION DIRECT SPARK TUBULAR UNIT HEATERS
(COMMERCIAL, INDUSTRIAL & RESIDENTIAL INSTALLATIONS)

ATTENTION: READ THIS MANUAL AND ALL LABELS ATTACHED TO THE UNIT CAREFULLY BEFORE ATTEMPTING TO INSTALL, OPERATE OR SERVICE THESE UNITS! CHECK UNIT DATA PLATE FOR TYPE OF GAS AND ELECTRICAL SPECIFICATIONS AND MAKE CERTAIN THAT THESE AGREE WITH THOSE AT THE POINT OF INSTALLATION. RECORD THE UNIT MODEL AND SERIAL No.(s) IN THE SPACE PROVIDED. RETAIN FOR FUTURE REFERENCE.

Model No. ___________________________ Serial No. ___________________________

FOR YOUR SAFETY
Do not store or use gasoline or other flammable vapors and liquids in the vicinity of this or any other appliance.

FOR YOUR SAFETY
WHAT TO DO IF YOU SMELL GAS
Do not try to light any appliance.
Do not touch any electrical switch; do not use any phone in your building.
Immediately call your gas supplier from a neighbor’s phone. Follow the gas supplier’s instructions.
If you cannot reach your gas supplier, call your fire department.

WARNING Improper installation, adjustment, alteration, service, or maintenance can cause property damage, injury, or death. Read the installation, operating, and maintenance instruction thoroughly before installing or servicing this equipment.

APPROVED FOR USE IN CALIFORNIA

WARNING Install, operate, and maintain unit in accordance with the manufacturer's instructions to avoid exposure to fuel substances, or substances from incomplete combustion, which can cause death or serious illness. The state of California has determined that these substances may cause cancer, birth defects, or other reproductive harm.

INSTALLER'S RESPONSIBILITY
Installer Please Note: This equipment has been test fired and inspected. It has been shipped free from defects from our factory. However, shipment and installation problems such as loose wires, leaks, or loose fasteners may occur. It is the installer's responsibility to inspect and correct any problem that may be found.

RECEIVING INSTRUCTIONS
The Separated Combustion Tubular Unit Heaters are shipped in two separate cartons: one containing the unit and the other containing a Concentric Vent Kit. Both pieces are required for each installation. Inspect shipment immediately when received to determine if any damage has occurred to the unit during shipment. After the unit has been uncrated, check for any visible damage to the unit. If any damage is found, the consignee should sign the bill of lading indicating such damage and immediately file claim for damage with the transportation company.

STERLING
HVAC PRODUCTS
260 NORTH ELM ST., WESTFIELD, MA 01085
TEL: (413) 564-5540 FAX: (413) 562-5311
www.sterlinghvac.com

A MESTEK COMPANY
MODELS: SF-30, 45, 60, 75
Please utilize this toll free number to contact your local representative 800-490-2290.
TABLE OF CONTENTS

SPECIFICATIONS
 Basic Description ... 2
 Performance & Specification Data 4

GENERAL SAFETY INFORMATION
 Installation Codes ... 2, 3
 Special Precautions .. 2, 3

INSTALLATION
 Locating Units .. 5, 6
 Combustion Air ... 5, 6
 Proper Clearances ... 5, 6
 Suspension of Units ... 5, 6
 Gas Supply Piping .. 7, 8

ELECTRICAL CONNECTIONS 9, 10

VENTING .. 11, 12, 13, 14, 15

OPERATION
 Explanation of Controls and Operation 16
 Main Burner Orifice Schedule 17
 Adjustments .. 17
 High Altitude Operation 17, 18

MAINTENANCE
 Servicing & Cleaning 18

TROUBLESHOOTING GUIDE................................. 19, 20, 21, 22

IDENTIFICATION OF PARTS 23, 24

WARRANTY ... 25

INSPECTION SHEET .. 26

NOTICE: It is the equipment owner's responsibility to provide any scaffolding or other apparatus required to perform emergency service or annual/periodic maintenance to this equipment.

DESCRIPTION

The Separated Combustion Tubular Gas Fired Unit Heater is a factory assembled, separated combustion system, low static pressure type propeller fan unit heater designed to be suspended within the space to be heated. THESE HEATERS ARE NOT TO BE CONNECTED TO DUCTWORK. These unit heaters are design certified under ANSI Z83.8 for industrial/commercial use and CSA .10.96 U.S. (2nd ed.) for residential use. The designs are certified by ETL as providing a minimum of 80% thermal efficiency, and approved for use in California. Do not alter these units in any way. If you have any questions after reading this manual, contact the manufacturer.

Figure 1 - Separated Combustion Tubular 30 thru 75 Unit Heaters

See Identification of Parts throughout this manual.

The following terms are used throughout this manual, in addition to the ETL requirements to bring attention to the presence of potential hazards, or to important information concerning the product:

⚠️ DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death, serious injury, or substantial property damage.

⚠️ CAUTION Indicates an imminently hazardous situation which, if not avoided, may result in minor injury or property damage.

⚠️ WARNING Indicates an imminently hazardous situation which, if not avoided, could result in death, serious injury, or substantial property damage.

NOTICE: Used to notify of special instructions on installation, operation, or maintenance which are important to equipment but not related to personal injury.
GENERAL SAFETY INFORMATION

WARNING Failure to comply with the general safety information may result in extensive property damage, severe personal injury, or death.

Installation must be made in accordance with local codes, or in absence of local codes, with the latest edition of ANSI Standard Z223.1 (N.F.P.A. No. 54) National Fuel Gas Code. All of the ANSI and NFPA Standards referred to in these installation instructions are those that were applicable at the time the design of this appliance was certified. The ANSI Standards are available from CSA Information Services, 1-800-463-6727. The NFPA Standards are available from the National Fire Protection Association, Battymarch Park, Quincy, MA 02269.

If installed in Canada, the installation must conform with local building codes, or in the absence of local building codes, with CGA-B149.1 "Installation Codes for Natural Gas Burning Appliances and Equipment" or CGA-B149.2 "Installation Codes for Propane Gas Burning Appliances and Equipment." These unit heaters have been designed and certified to comply with CGA 2.6.

WARNING Do not alter the unit heater in any way or damage to the unit and/or severe personal injury or death may occur!

WARNING Disconnect all power and gas supplies before installing or servicing the heater. If the power disconnect is out of sight, lock it in the open position and tag it to prevent unexpected application of power. Failure to do so could result in fatal electric shock, or severe personal injury.

CAUTION Ensure that all power sources conform to the requirements of the unit heater, or damage to the unit will result!

Follow installation instructions CAREFULLY to avoid creating unsafe conditions. All wiring should be done and checked by a qualified electrician, using copper wire only. All gas connections should be made and leak-tested by a suitably qualified individual, per instructions in this manual. Also follow procedures listed on "Gas Equipment Start-Up Sheet" located in this manual.

Use only the fuel for which the heater is designed (see rating plate). Using LP gas in a heater that requires natural gas, or vice versa, will create risk of gas leaks, carbon monoxide poisoning, and explosion.

WARNING This product must be installed by a licensed plumber or gas fitter when installed within the Commonwealth of Massachusetts.

WARNING Do not attempt to convert the heater for use with a fuel other than the one intended. Such conversion is dangerous, as it will create the risks previously listed.

Make certain that the power source conforms to the electrical requirements of the heater.

WARNING Do not depend upon a thermostat or other switch as sole means of disconnecting power when installing or servicing heater. Always disconnect power at main circuit breaker as described above. Failure to do so could result in fatal electric shock.

Special attention must be given to any grounding information pertaining to this heater. To prevent the risk of electrocution, the heater must be securely and adequately grounded. This should be accomplished by connecting a ground conductor between the service panel and the heater. To ensure a proper ground, the grounding means must be tested by a qualified electrician.

Do not insert fingers or foreign objects into heater or its air moving device. Do not block or tamper with the heater in any manner while in operation, or just after it has been turned off, as some parts maybe hot enough to cause injury.

This heater is intended for general heating applications ONLY. It must NOT be used in potentially dangerous locations such as flammable, explosive, chemical-laden, or wet atmospheres.

Do not attach ductwork to this product or use it as a makeup air heater. Such usage voids the warranty and will create unsafe operation.

In cases in which property damage may result from malfunction of the heater, a back-up system or temperature sensitive alarm should be used.

CAUTION The open end of piping systems being purged shall not discharge into areas where there are sources of ignition or into confined spaces UNLESS precautions are taken as follows: (1) by ventilation of the space, (2) control of the purging rate, (3) elimination of all hazardous conditions. All precautions must be taken to perform this operation in a safe manner!

Unless otherwise specified, the following conversions may be used for calculating SI unit measurements:

- 1 foot = 0.305 m
- 1 inch = 25.4 mm
- 1 gallon = 3.785 L
- 1 pound = 0.453 kg
- 1 psig = 6.894 kPa
- 1 cubic foot = 0.028 m³
- 1000 BTU/cu. ft. = 37.5 MJ/m³
- 1000 BTU per hour = 0.293 kW
- 1 inch water column = 0.249 kPa
- liter/second = CFM x 0.472
- meters/second = FPM ÷ 196.8
Table 1 - Performance and Dimensional Data - Tubular 30 thru 75 Propeller Unit Heater

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>75</th>
</tr>
</thead>
<tbody>
<tr>
<td>PERFORMANCE DATA†</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input - BTU/Hr. (kW)</td>
<td>30,000 (8.8)</td>
<td>45,000 (13.2)</td>
<td>60,000 (17.6)</td>
<td>75,000 (22.0)</td>
</tr>
<tr>
<td>Output - BTU/Hr. (kW)</td>
<td>24,300 (7.1)</td>
<td>36,450 (10.7)</td>
<td>48,600 (14.2)</td>
<td>60,750 (17.8)</td>
</tr>
<tr>
<td>Thermal Efficiency (%)</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>Free Air Delivery - CFM (cu. m/s)</td>
<td>500 (0.236)</td>
<td>750 (0.355)</td>
<td>1,000 (0.473)</td>
<td>1,250 (0.591)</td>
</tr>
<tr>
<td>Full Load Amps at 120V **</td>
<td>3.0</td>
<td>3.0</td>
<td>3.7</td>
<td>3.7</td>
</tr>
<tr>
<td>MOTOR DATA: Motor HP</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
<td>1/20</td>
</tr>
<tr>
<td>Motor (kW)</td>
<td>(0.037)</td>
<td>(0.037)</td>
<td>(0.037)</td>
<td>(0.037)</td>
</tr>
<tr>
<td>Motor Type</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
<td>SP</td>
</tr>
<tr>
<td>R.P.M.</td>
<td>1650</td>
<td>1650</td>
<td>1050</td>
<td>1050</td>
</tr>
<tr>
<td>Motor Amps @ 115V</td>
<td>1.9</td>
<td>1.9</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>DIMENSIONAL DATA - inches (mm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>"B" Overall Height</td>
<td>13 (330)</td>
<td>13 (330)</td>
<td>18-3/4 (476)</td>
<td>18-3/4 (476)</td>
</tr>
<tr>
<td>"D" Center Line Height of Flue</td>
<td>7-1/4 (184)</td>
<td>7-1/4 (184)</td>
<td>10 (254)</td>
<td>10 (254)</td>
</tr>
<tr>
<td>"E" Center Line Height of Combustion Air Inlet</td>
<td>9 (229)</td>
<td>9 (229)</td>
<td>14-3/4 (375)</td>
<td>14-3/4 (375)</td>
</tr>
<tr>
<td>"F" Discharge Opening Height</td>
<td>10-1/2 (267)</td>
<td>10-1/2 (267)</td>
<td>16-1/4 (413)</td>
<td>16-1/4 (413)</td>
</tr>
<tr>
<td>"G" Fan Diameter-in</td>
<td>10</td>
<td>10</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Unit Weight - lbs. (kgs)</td>
<td>62 (28)</td>
<td>68 (31)</td>
<td>87 (39)</td>
<td>93 (42)</td>
</tr>
<tr>
<td>Shipping Weight - lbs. (kgs)</td>
<td>72 (33)</td>
<td>78 (35)</td>
<td>102 (46)</td>
<td>108 (49)</td>
</tr>
</tbody>
</table>

† Ratings shown are for unit installations at elevations between 0 and 2,000 ft (0 to 610m). For unit installations in U.S.A. above 2,000 ft (610m), the unit input must be derated 4% for each 1,000 ft (305m) above sea level; refer to local codes, or in absence of local codes, refer to the the latest edition of the National Fuel Gas Code, ANSI Standard Z223.1 (N.F.P.A. No. 54).

For installations in Canada, any reference to deration at altitudes in excess of 2,000 ft (610m) are to be ignored. At altitudes of 2,000 ft. to 4,500 ft. (610 to 1372m), the unit must be derated to 90% of the normal altitude rating, and be so marked in accordance with the ETL certification.

[Diagram of Unit Heater Dimensions]
WARNING Do not install unit heaters in corrosive or flammable atmospheres! Premature failure of, or severe damage to the unit will result!

WARNING Avoid locations where extreme drafts can affect burner operation. Unit heaters must not be installed in locations where air for combustion would contain chlorinated, halogenated or acidic vapors. If located in such an environment, premature failure of the unit will occur!

Since the unit is equipped with an automatic gas ignition system, the unit heater must be installed such that the gas ignition control system is not directly exposed to water spray, rain or dripping water.

NOTICE: Location of unit heaters is related directly to the selection of sizes. Basic rules are as follows:

MOUNTING HEIGHT: If the unit heater is installed in a garage, it must be installed with a minimum clearance above the floor of 18 inches (457mm).

AIR DISTRIBUTION: Direct air towards areas of maximum heat loss. When multiple heaters are involved, circulation of air around the perimeter is recommended where heated air flows along exposed walls. Satisfactory results can also be obtained where multiple heaters are located toward the center of the area with heated air directed toward the outside walls. Be careful to avoid all obstacles and obstructions which could impede the warm air distribution patterns.

Unit heaters should not be installed to maintain low temperatures and/or freeze protection of buildings. A minimum of 50°F (10°C) thermostat setting must be maintained. If unit heaters are operated to maintain lower than 50°F (10°C), hot flue gases are cooled inside the heat exchanger to a point where water vapor (a flue gas by-product) condenses onto the heat exchanger walls. The result is a mildly corrosive acid that prematurely corrodes the aluminized heat exchanger and can actually drip water down from the unit heater onto floor surface. Additional unit heaters should be installed if a minimum 50°F (10°C) thermostat setting cannot be maintained.

NOTICE: Unit Heater sizing should be based on heat loss calculations where the unit heater output equals or exceeds heat loss.

AIRCRAFT HANGARS: Unit Heaters must be installed in aircraft hangars and public garages as follows: In aircraft hangars, unit heaters must be at least 10 feet (3.05m) above the upper surface of wings or engine enclosures of the highest aircraft to be stored in the hangar and 8 feet (2.44m) above the floor in shops, offices and other sections of the hangar where aircraft are not stored or housed. Refer to current ANSI/NFPA No. 409, Aircraft Hangars. In Canada, installation is suitable in aircraft hangars when acceptable to the enforcing authorities.

PUBLIC GARAGES: In repair garages, unit heaters must be at least 8 feet (2.4m) above the floor. Refer to the latest edition of NFPA 88B, Repair Garages.

In parking structures, unit heaters must be installed so that the burner flames are located a minimum of 18 in. (457mm) above the floor or protected by a portion not less than 18 in. (457mm) high. However, any unit heater mounted in a parking structure less than 8 feet. (2.4m) above the floor must be equipped with an OSHA approved fan guard. Refer to the latest edition of NFPA 88A, Parking Structures.

In Canada, installation must be in accordance with the latest edition of CGA B149 “Installation Codes for Gas Burning Appliances and Equipment.”

CLEARANCES: Each Gas Unit Heater shall be located with respect to building construction and other equipment so as to permit access to the Unit Heater. Clearance between vertical walls and the vertical sides of the Unit Heater shall be no less than 1 inch (25.4mm). However, to ensure access to the control box and fan, a minimum of 18” (457mm) is required for the fan, and control box side. A minimum clearance of 1 inch (25.4mm) must be maintained between the top of the Unit Heater and the ceiling. The bottom of the Unit Heater must be no less than 1 inch (25.4mm) from any combustible. The distance between the flue collector and any combustible must be no less than 1 inch (25.4mm). Also see VENTING section.

NOTICE: Increasing the clearance distances may be necessary if there is a possibility of distortion or discoloration of adjacent materials.

MOUNTING: The Unit Heater may be mounted with the vent outlet, gas and electrical connections to the right or left of the air moving fan. The Unit Heater is shipped with the connections to the right of the fan when looking in the direction of the air flow. If connections to the right are required, remove hanger brackets from face of unit and attach as pictured in Figure 3A. If connections to the left are required, invert the heater (180°), mount the hanging brackets as above, and remove, invert, and replace the control access panel and the air discharge louvers.
The Unit Heater may be mounted by fastening the hanging brackets directly to ceiling joists or by suspending from four rods. See Figures 3A, 3B and 3C.

WARNING Make certain that the lifting methods used to lift the heater and the method of suspension used in the field installation of the heater are capable of uniformly supporting the weight of the heater at all times. Failure to heed this warning may result in property damage or personal injury!

WARNING Make sure that the structure to which the unit heater is to be mounted is capable of safely supporting its weight. Under no circumstances must the gas lines, the venting system or the electrical conduit be used to support the heater; or should any other objects (i.e. ladder, person) lean against the heater gas lines, venting system or the electrical conduit for support. Failure to heed these warnings may result in property damage, personal injury, or death.

CAUTION Unit Heaters must be hung level from side to side and from front to back, see Figures 3A, 3B and 3C. Failure to do so will result in poor performance and/or premature failure of the unit.

WARNING Ensure that all hardware used in the suspension of each unit heater is more than adequate for the job. Failure to do so may result in extensive property damage, severe personal injury, or death!

Refer to Figures 3A, 3B and 3C for suspension of units.
GAS PIPING

WARNING To avoid damage or possible personal injury, do not connect gas piping to this unit until a supply line pressure/leak test has been completed. Connecting the unit before completing the pressure/leak test may damage the unit gas valve and result in a fire hazard.

WARNING Do not rely on a shut-off valve to isolate the unit while conducting gas pressure/leak tests. These valves may not be completely shut off, exposing the gas valve to excessive pressure and damage.

PIPE SIZING

To provide adequate gas pressure to the gas unit heater, size the gas piping as follows:

1. Find the cu. ft./hr. by using the following formula:

 \[\text{Cu. ft./hr} = \frac{\text{Input}}{\text{BTU}} \]

2. Refer to Table 2. Match “Length of Pipe in Feet” with appropriate “Gas Input - Cu. Ft./Hr.” figure. This figure can then be matched to the pipe size at the top of the column.

Example:

It is determined that a 67 foot (20.4m) run of gas pipe is required to connect a 75 MBTU gas unit heater to a 1,000 BTU/cu ft. (0.29kW) natural gas supply.

\[
\frac{75,000 \text{ BTU/Hr}}{1,000 \text{ BTU/cu. ft.}} = 75 \text{ Cu. ft./hr.}
\]

Using Table 2, a 3/4 inch pipe is needed.

NOTE: See General Safety Information section for English/Metric unit conversion factors.

Table 2 - Gas Pipe Size

<table>
<thead>
<tr>
<th>Nominal Pipe Size</th>
<th>Internal Dia. (in.)</th>
<th>Internal Dia. (m)</th>
<th>Length of Pipe, Feet (meters)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/2 0.622</td>
<td>1.52</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td>3/4 0.824</td>
<td>2.08</td>
<td>5.28</td>
<td></td>
</tr>
<tr>
<td>1 1.049</td>
<td>2.64</td>
<td>8.00</td>
<td></td>
</tr>
<tr>
<td>1 1/4 1.380</td>
<td>3.49</td>
<td>10.60</td>
<td></td>
</tr>
<tr>
<td>1 1/2 1.610</td>
<td>4.06</td>
<td>12.95</td>
<td></td>
</tr>
<tr>
<td>2 2.067</td>
<td>5.20</td>
<td>31.80</td>
<td></td>
</tr>
<tr>
<td>2 1/2 2.469</td>
<td>6.22</td>
<td>37.80</td>
<td></td>
</tr>
<tr>
<td>3 3.068</td>
<td>7.73</td>
<td>47.80</td>
<td></td>
</tr>
<tr>
<td>4 4.026</td>
<td>9.65</td>
<td>56.00</td>
<td></td>
</tr>
</tbody>
</table>

Maximum Capacity of Pipe in Cubic Feet of Gas per Hour (Cubic Meters per Hour) for Gas Pressures of 0.5 psig (3.5 kPa) or Less, and a Pressure Drop of 0.5 Inch Water Column (124.4 Pa)

(Based on a 0.60 Specific Gravity Gas)

NOTICE: If more than one unit heater is to be served by the same piping arrangement, the total cu. ft./hr. input and length of pipe must be considered.

NOTICE: If the gas unit heater is to be fired with LP gas, consult your local LP gas dealer for pipe size information.

NOTICE: HEATER INSTALLATION FOR USE WITH PROPANE (BOTTLED) GAS MUST BE MADE BY A QUALIFIED L.P. GAS DEALER OR INSTALLER. HE WILL INSURE THAT PROPER JOINT COMPOUNDS ARE USED FOR MAKING PIPE CONNECTIONS; THAT AIR IS PURGED FROM LINES; THAT A THOROUGH TEST IS MADE FOR LEAKS BEFORE OPERATING THE HEATER; AND THAT IT IS PROPERLY CONNECTED TO THE PROPANE GAS SUPPLY SYSTEM.

Before any connection is made to the existing line supplying other gas appliances, contact the local gas company to make sure that the existing line is of adequate size to handle the combined load.

1. Determine the required Cu. Ft./Hr. by dividing the input by 1000. For SI/Metric measurements: Convert BTU/Hr. to kilowatts. Multiply the units inputs (kW) by 0.0965 to determine Cu. Meters./Hr. 2. FOR NATURAL GAS: Select pipe size directly from the table. 3. FOR PROPANE GAS: Multiply the Cu. Ft./Hr. value by 0.633; then, use the table. 4. Refer to the metric conversion factors listed in the General Safety section for SI Unit measurement conversions.
1. Install the gas piping in accordance with applicable local codes.
2. Check gas supply pressure. Each unit heater must be connected to a gas supply capable of supplying its full rated capacity at a pressure not less than 5 in. W.C. (1.2 kPa), and not greater than 14 in. W.C. (3.5 kPa) for natural gas. The manifold pressure for natural gas must be 3.5 in. W.C. (0.9 kPa) under normal conditions. For propane gas operation, the manifold pressure must be 10 in. W.C. (2.5 kPa). For propane (LP) gas, the minimum supply pressure must be 11 in. W.C. (2.7 kPa). A field LP tank regulator must be used to limit the supply pressure to a maximum of 14 in. W.C. (3.5 kPa). All piping should be sized in accordance with the latest edition of ANSI Standard Z223.1 National Fuel Gas Code; in Canada, according to CGA-B149. See Tables 1 & 2 for correct gas piping size. If gas pressure is excessive on natural gas applications, install a pressure regulating valve in the line upstream from the main shutoff valve.
3. Adequately support the piping to prevent strain on the gas manifold and controls.
4. To prevent the mixing of moisture with gas, run the take-off piping from the top, or side, of the main.
5. Standard Unit Heaters are supplied with a combination valve which includes:
 a. Manual "A" valve
 b. Manual "B" valve
 c. Solenoid valve
 d. Pressure regulator
 Pipe directly into the combination valve (see Figure 4).
6. Gas valve has a pressure test post requiring a 3/32" hex head wrench to read gas supply and manifold pressures. Open 1/4 turn counterclockwise to read, turn clockwise to close and reseat. A 5/16" ID hose fits the pressure post.
7. Provide a drip leg in the gas piping near the gas unit heater. A ground joint union and a manual gas shutoff valve should be installed ahead of the unit heater controls to permit servicing. The manual shutoff valve must be located external to the jacket. (See Figure 4)
8. Make certain that all connections have been adequately doped and tightened.

⚠️ CAUTION ⚠️ Do not over tighten the inlet gas piping into the valve. This may cause stresses that will crack the valve!

NOTICE: Use pipe joint sealant resistant to the action of liquefied petroleum gases regardless of gas conducted.

⚠️ WARNING ⚠️ Check all pipe joints for leakage using a soap solution or other approved method. Never use an open flame or severe personal injury or death may occur!

Figure 4 - Pipe Installation, Standard Controls

The appliance and its individual shutoff valve must be disconnected from the gas supply piping system during any pressure testing of that system in excess of 1/2 psig (3.5 kPa).

The appliance must be isolated from the gas supply piping system by closing its individual manual shutoff valve during any pressure testing of the gas supply piping system at test pressures equal to or less than 1/2 psig (3.5 kPa).
ELECTRICAL CONNECTIONS

WARNING
HAZARDOUS VOLTAGE!
DISCONNECT ALL ELECTRIC
POWER INCLUDING REMOTE
DISCONNECTS BEFORE
SERVICING. Failure to
disconnect power before
servicing can cause severe
personal injury or death.

Standard units are shipped for use on 115 volt, 60 hertz,
single phase electric power. The motor name-plate and
electrical rating of the transformer should be checked
before energizing the unit heater electrical system. All
external wiring must conform to the latest edition of
ANSI/NFPA No. 70, National Electrical Code, and
applicable local codes; in Canada, to the Canadian

CAUTION Do not use any tools (i.e. screwdriver,
pliers, etc.) across terminals to check for power.
Use a voltmeter.

It is recommended that the electrical power supply to
each unit heater be provided by a separate, fused, and
permanently live electrical circuit. A disconnect switch of
suitable electrical rating should be located as close to
the gas valve and controls as possible. Each unit heater
must be electrically grounded in accordance with the
latest edition of the National Electrical Code, ANSI/NFPA
No. 70, or CSA Standard C22.1. Refer to Figures 5A, 5B,
and 5C.

Figure 5A - Low-voltage Thermostat Wiring
Single Stage

Figure 5B - T834H-1009 or T834H-1017
Thermostat Wiring

THERMOSTAT WIRING AND LOCATION:

NOTICE: The thermostat must be mounted on a
vertical, vibration-free surface, free from air currents,
and in accordance with the furnished instructions.

Mount the thermostat approximately 5 feet (1.5m) above
the floor, in an area where it will be exposed to a free
circulation of average temperature air. Always refer to
the thermostat instructions, as well as our unit wiring
diagram, and wire accordingly. Avoid mounting the
thermostat in the following locations:

1. Cold Areas- Outside walls or areas where drafts
 may affect the operation of the control.
2. Hot Areas- Areas where the sun's rays, radiation, or
 warm air currents may affect the operation of the
 control.
3. Dead Areas- Areas where the air cannot circulate
 freely, such as behind doors or in corners.

THERMOSTAT HEAT ANTICIPATOR ADJUSTMENTS:

The initial heat anticipator setpoint should equal the
thermostat's current amperage draw when the unit is
firing. This setpoint should be measured for the best
results. Use the recommended ranges for a guide. If
further information is needed, consult your thermostat
manufacturer's instructions.

Recommended heat anticipator setting:

<table>
<thead>
<tr>
<th>Unit Size:</th>
<th>30 thru 200</th>
<th>250 thru 400</th>
</tr>
</thead>
<tbody>
<tr>
<td>For Tubular Units:</td>
<td>0.35 Amps</td>
<td>0.65 Amps</td>
</tr>
</tbody>
</table>

NOTICE: The start-up fan delay should not exceed
30 seconds from a cold start.

IMPORTANT: For all wiring connections, refer to the
wiring diagram shipped with your unit (either affixed
to the side jacket or enclosed in the installation
instructions envelope). Should any original wire
supplied with the heater have to be replaced, it must
be replaced with wiring material having a temperature
rating of at least 105° C.
ELECTRICAL CONNECTIONS (continued)

Figure 5C - Separated Combustion Tubular Propeller Units with Natural and Propane (LP) Gas

NOTICE: See Figures 5A, 5B and 5C for connecting the thermostat to the unit heater. If using a standard low voltage thermostat with a sub-base switch for fan control, connect the G terminal of the thermostat to the G terminal of the unit heater.
COMBUSTION AIR VENTING AND PIPING

⚠️ WARNING ⚠️ Never operate unit heaters without combustion air and flue gas piping in place or severe personal injury or death may occur!

⚠️ WARNING ⚠️ CARBON MONOXIDE! Your venting system must not be blocked by any snow, snow drifts, or any foreign matter. Inspect your venting system to ensure adequate ventilation exists at all times! Failure to heed these warnings could result in Carbon Monoxide Poisoning (symptoms include grogginess, lethargy, inappropriate tiredness, or flu-like symptoms).

1. The combustion air system installation must be in accordance with the current edition of the National Fuel Gas Code-NFPA 54 or ANSI Z223.1 National Fuel Gas Code. In Canada, installation must be in accordance with CAN/CGA-B149.1 “Installation Code for Natural Gas Burning Appliances and Equipment” and CAN/CGA-B149.2 “Installation Code for Propane Burning Appliances and Equipment”.

2. The concentric vent box, inlet air screen, deflector disk, and vent terminal provided with the unit heater must be installed at the termination point of the combustion air/vent system. See Figures 6, 7, 8, and 9 and Table 3.

3. Each unit heater MUST have its own combustion air system. It MUST NOT be connected to other air intake systems.

4. Use single wall pipe constructed of 26 GA galvanized steel or a material of equivalent durability and corrosion resistance for the vent system. For installations in Canada, use pipe constructed from .025 inch thick aluminum or .018 inch thickness stainless steel. For residential installations in the United States, vent pipe approved for Category III appliances must be used between the appliance and the concentric vent box unless 33% of the vent run is vertical, then single wall galvanized vent pipe or double wall Type B vent pipe may be used between the appliance and the concentric vent box. A single length of double wall Type B vent pipe must be used to go through the concentric vent box and outside wall to the vent terminal.

⚠️ WARNING ⚠️ Never use pipe other than 4 inch diameter. Never use PVC, ABS or any other non-metallic pipe for venting! To do so may result in serious damage to the unit and or severe personal injury or death!

5. Long runs of single wall combustion air piping passing through an unheated space may require insulating if condensation becomes noticeable.

6. The combustion air system must be installed to prevent collection of condensate. Pitch horizontal pipes downward 1/4 inch per foot toward the inlet cap to facilitate drainage. Vertical combustion air pipes should be piped as depicted in Figure 7.

7. The equivalent length of the combustion air system must not be less than 5 feet (1.5m) and must not exceed 40 feet (12m). Equivalent length equals the total length of straight pipe plus 5 feet (1.5m) for each 90° elbow and 2.5 feet (0.76m) for each 45° elbow.

NOTICE: For optimum performance keep the combustion air system as straight as possible.

8. Each slip joint must be secured with at least three corrosion resistant screws. Two full turns of 3M #425 Aluminum Foil Tape or its equivalent must then be used to seal each joint. General Electric RTV-108, Dow-Corning RTV-732 or an equivalent silicone sealant with a temperature rating of 500°F may be used instead of the tape.

9. For horizontal combustion air systems longer than 5 feet (1.5m), the system must be supported from overhead building structures at 4 foot (1.2m) intervals in the U.S. and at 3 foot (0.91m) intervals in Canada.

EXHAUST VENTING

NOTICE: Every unit to be installed MUST use the Factory supplied Concentric Vent Kit. A Concentric Vent Kit is shipped with every unit. If you do not have this kit, contact the manufacturer ASAP to obtain one prior to installation.

⚠️ WARNING ⚠️ Never operate unit heaters without combustion air and flue gas piping in place or severe personal injury or death may occur!

1. Vent system installation must be in accordance with the current National Fuel Gas Code-NFPA 54 or ANSI Z223.1 National Fuel Gas Code. In Canada installation must be in accordance with CAN/CGA-B149.1 “Installation Code for Natural Gas Burning Appliances and Equipment” and CAN/CGA-B149.2 “Installation Code for Propane Burning Appliances and Equipment”.

2. The Concentric Vent Kit (which includes a concentric vent box, air inlet screen, deflector collar and vent terminal) provided with the heater by the manufacturer MUST be installed at the termination point of the combustion air/vent system. See Figures 6, 7, 8, and 9 and Table 3.

3. Each unit heater MUST have its own vent system. It MUST NOT be connected to other vent systems or to a chimney.

4. Use single wall pipe constructed of 26 GA galvanized steel or a material of equivalent durability and corrosion resistance for the vent system. For installations in Canada, use pipe constructed from .025 inch thick aluminum or .018 inch thickness stainless steel. For residential installations in the United States, vent pipe approved for Category III appliances must be used between the appliance and the concentric vent box unless 33% of the vent run is vertical, then single wall galvanized vent pipe or double wall Type B vent pipe may be used between the appliance and the concentric vent box. A single length of double wall Type B vent pipe must be used to go through the concentric vent box and outside wall to the vent terminal.
VENTING (continued)

WARNING Never use pipe other than 4 inch diameter. Never use PVC, ABS or any other non-metallic pipe for venting! To do so may result in serious damage to the unit and or severe personal injury or death!

5. Any run of single wall vent pipe passing through an unheated space must be insulated with an insulation suitable to 550° F.

6. The vent system must be installed to prevent collection of condensate. Pitch horizontal pipes downward 1/4 inch per foot (21mm per meter) toward the vent cap to facilitate drainage. Vertical vent pipes should be piped as depicted in Figure 7.

7. The equivalent length of the vent system must not be less than 5 feet (1.5m) and must not exceed 40 feet (12m). The equivalent length equals the total length of straight pipe plus 5 feet (1.5m) for each 90° elbow and 2.5 feet (0.76m) for each 45° elbow.

8. Each slip joint must be secured with at least three corrosion resistant screws. Two full turns of 3M #425 Aluminum Foil tape or its equivalent must then be used to seal each joint. High temperature silicone sealant may be used instead of the tape. Silicone sealant must be used to seal the joint between the Type B vent pipe and the single wall pipe.

9. For horizontal vent systems longer than 5 feet (1.5m), the system must be supported from overhead building structures at 4 foot (1.2m) intervals in the U.S. and at 3 foot (0.91m) intervals in Canada.

10. The exhaust vent system must remain at a minimum distance of 1 inch (25mm) from all combustible materials. Any part of the vent system that passes through a combustible material must be properly insulated.

11. The top of a VERTICALLY VENTED exhaust system must extend at least 3 feet (0.91m) above the roof surface that it passes through. See Figure 7.

12. The point of termination for a HORIZONTALLY VENTED exhaust system must be at least 12 inches (0.3m) from the exterior of the wall that it passes through. In addition, the termination point must be at least 1 foot (0.3m) above grade or above the snow line, more than 6 feet (1.8m) from the combustion air inlet of another appliance, at least 4 feet (1.2m) below, 4 feet (1.2m) horizontally from, or 1 foot (0.3m) above any door, window or gravity air inlet into any building, and more than 3 feet (0.91m) from and not directly above, any gas meter or service regulator. See Figures 8 and 9 and Table 3.

Table 3

<table>
<thead>
<tr>
<th>Structure</th>
<th>Minimum Clearances for Termination Locations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Door, window or any gravity air inlet</td>
<td>4 feet below</td>
</tr>
<tr>
<td></td>
<td>4 feet horizontally</td>
</tr>
<tr>
<td></td>
<td>1 foot above</td>
</tr>
<tr>
<td>Forced air inlet within 10 ft.</td>
<td>3 feet above</td>
</tr>
<tr>
<td>Adjoining building or parapet</td>
<td>6 feet</td>
</tr>
<tr>
<td>Adjacent public walkways</td>
<td>7 feet above grade</td>
</tr>
</tbody>
</table>

Figure 6 - Concentric Vent Box

NOTICE: Increasing the clearance distances may be necessary if there is a possibility of distortion or discoloration of adjacent materials.
Figure 6A - Concentric Vent Installation

6 inch (152mm) single wall inlet air pipe
Concentric Vent Box
Drill holes and insert three sheetmetal screws equally spaced around collar
Drill holes and insert three sheetmetal screws equally spaced around joint
Seal joint with silicone sealant

4 inch (102mm) single wall vent pipe

Figure 7 - Vertical Intake/Vent Installation

Rear View

One Piece "B" Vent

Concentric Vent Box

6 Feet (1.8M) Min.
Vent Terminal

9-1/2" Min.
(241MM)

Deflector Disk
Inlet Air Screen

2-1/2" Min.
(63.5MM)

Flashing
(By Others)

Roof

20' (508MM) Min. (Size for expected snow depth)

Concentric Vent Box

Inlet Air Pipe
Flue Pipe

1/4" Min.
(21MM/M) Min. Slope

10 Ft. Max.(3.05 M) (Not to Exceed 33% Vertical Flue Height)

D-06877

D-06876
VENTING (continued)

Figure 8 - Horizontal Intake/Vent Installation

- Inlet Air Screen Deflector Disk
- Vent Terminal
- Concentric Vent Box

- 'B' Vent (One Piece)

- 9-1/2" Min. (241MM)
- 12" (305MM) Min. Above Grade or Max. Snow Depth
- 4" Min. (102MM)

- Flue Pipe
- 1 Ft.
- 1/4" Min.

- Condensate Drain with Trap (If required by local authorities)

Figure 9 - Horizontal Intake/Vent Installation

- Building Overhang
- 3'-0" Min. (0.9M Min.)

- Adjacent Building
- 6'-0" Min. (1.8M Min.)

- Vent Terminal

[Diagram images for Figure 8 and Figure 9]
VENTING (continued)

VERTICAL TERMINATION
Select location on roof for vent terminal, ensuring adequate space inside the building/structure for concentric vent box. Terminal must be at least 6 feet (1.8m) from any wall or adjoining building. See Figure 7.

Cut a hole through the roof for a 6 inch (152mm) combustion air pipe. Concentric vent box is to be suspended from the underside of the roof using suitable brackets (field supplied). Before mounting box, cut a length of 6 inch pipe so that dimension A, Figure 6, is equal to the dimension from the top of the box to the roof surface plus 20 inches or plus maximum expected snow depth, whichever is greater. Fasten 6 inch pipe to combustion air inlet connection of concentric vent box and seal joint. Insert pipe through roof and fasten vent box in place. Flash and/or caulk 6 inch pipe to roof. Install inlet air screen assembly and fasten to 6 inch pipe with screws. Insert a 5 foot length of Type B vent pipe through the 4-1/2 inch openings with the "UP" arrow pointing up. Position the pipe to extend 12 inches beyond the inlet air screen. Secure the Type B vent pipe in position by drilling three small equally spaced holes through the collar of the concentric vent box and inserting sheet metal screws. Install deflector disk on Type B vent pipe 2-1/2 inches above inlet air screen and fasten with screws. Seal joint between deflector disk and pipe with silicone sealant. Install vent terminal on top of Type B vent pipe, fasten with screws and seal joint.

Connect flue pipe and combustion air pipe from concentric vent box to unit, following instructions on pages 11 and 12. Joint between Type B vent pipe and single wall vent pipe must be sealed with high temperature silicone sealant. (See Figure 6A) Collars on unit and on concentric vent box are sized so that crimped ends of combustion air pipes go toward the unit and crimped ends of flue pipes go away from the unit.

HORIZONTAL TERMINATION
Select a location on outside wall for vent terminal. In most applications, the terminal should be on level with the flue outlet of the unit less a 1/4 inch per foot pitch for condensate drainage toward the outside of the building. See Figure 8.

The location of the vent terminal must be in accordance with the National Fuel Gas Code ANSI Z223.1 in the U.S. or the Natural Gas Installation Code CAN/CGA-B149.1 or the Propane Gas Installation Code CAN/CGA-149.2 in Canada. See Table 3 for minimum clearances. In Canada, a vent shall not terminate above a meter/regulator assembly within 3 feet (.9m) horizontally of the vertical centerline of the regulator nor within 6 feet (1.8m) of any gas service regulator vent outlet.

Cut a hole through the wall for a 6 inch (152mm) combustion air pipe. Install thimble if required by local codes or type of wall construction. Concentric vent box may be fastened directly to wall or spaced away from wall using suitable brackets (field supplied). Cut a length of 6 inch pipe so that it will protrude 4 inches (102mm) through the wall when the box is mounted in position. Fasten pipe to box with sheet metal screws, using at least three screws per joint. Seal joint with silicone sealant. Install Type B vent pipe in position by drilling three small equally spaced holes through the collar of the concentric vent box and inserting sheet metal screws. Install deflector disk on Type B vent pipe 2-1/2 inches from inlet air screen and fasten with screws. Install vent terminal on end of Type B vent pipe, fasten with screws and seal joint.

Connect flue pipe and combustion air pipe from concentric vent box to unit, following instructions on pages 11 and 12. Joint between Type B vent pipe and single wall vent pipe must be sealed with high temperature silicone sealant. (See Figure 6A) Collars on unit and on concentric vent box are sized so that crimped ends of combustion air pipes go toward the unit and crimped ends of flue pipes go away from the unit.
OPERATION
SEPARATED COMBUSTION POWER VENTED UNITS
DIRECT SPARK IGNITION

CAUTION: Never operate the unit beyond the specified limits or severe damage to and or premature failure of the unit will result!

EXPLANATION OF CONTROLS (see Figure 10)
1. Each Separated Combustion Unit Heater comes equipped with a power vent system that consists of a power venter motor and blower, pressure switch, sealed combustion chamber and sealed flue collector.

CAUTION: The addition of external draft hoods or power venters is not permitted. Addition of such devices may cause severe unit malfunction or failure!

2. The power venter motor is energized by the room thermostat through the integrated control board when a demand for heat is sensed. The pressure switch measures the pressure differential between the air inlet and exhaust vent systems. If the differential is correct, the unit begins its pre-purge timing.

Under no conditions is the unit to be fired if the power venter is not operable or severe personal injury or death may occur!

3. The direct ignition system consists of an ignition control module and a gas valve. When the pre-purge period ends, the spark ignition system is energized, and the gas valve opens to supply gas to the burners. When the thermostat is satisfied, the vent system is de-energized and the valve closes to stop the flow of gas to the unit.

4. The limit switch interrupts the flow of electric current to the control board, interrupting the flow of gas to the gas valve if the unit heater becomes overheated.

5. Once the thermostat is satisfied, or the limit switch interrupts the flow of electric current to the control board, the unit will begin a post-purge period. When the post-purge period ends, the power venter motor is de-energized.

6. The fan operation is delayed 30 seconds once the thermostat is closed, and continues operation for 30 seconds after the thermostat opens.

NOTICE: The start-up fan delay must not exceed 30 seconds from a cold start.

7. The wall thermostat, supplied optionally, is a temperature sensitive switch that operates the vent and ignition system to control the temperature of the space being heated.

NOTICE: The thermostat must be mounted on a vertical, vibration-free surface free from air currents and in accordance with the furnished instructions.

INITIAL LIGHTING
1. Open the manual gas valve in the gas supply line to the unit heater. Loosen the union in the gas line to purge it of air. Tighten the union and check for leaks.

WARNING Check all pipe joints for leakage using a soap solution or other approved method. Never use an open flame or severe personal injury or death may occur!

2. Open the manual valve on the unit heater.
3. Turn ON the electrical power.
4. The unit should be under the control of the thermostat. Turn the thermostat to the highest point and determine that the power venter motor starts and the burners ignite. Turn the thermostat to the lowest point and determine that the power venter motor shuts off and the burners are extinguished.
5. Turn the thermostat to the desired position.
6. See Gas Input Rate and Adjustments sections.

SHUT DOWN
1. Turn the valve selector lever to the “OFF” position.
2. Turn off the electricity.
3. To relight, follow “start-up” instructions.

See Figure 10-15 for parts/identification.
PRIMARY AIR SHUTTER ADJUSTMENT

Primary air adjustment is made at the factory. No field adjustments are necessary.

GAS INPUT RATE

Check the gas input rate as follows (Refer to General Safety Information section for metric conversions).

⚠️ CAUTION ⚠️ Never overfire the unit heater, as this may cause unsatisfactory operation, or shorten the life of the heater.

1. Turn off all gas appliances that use gas through the same meter as the unit heater.
2. Turn the gas on to the unit heater.
3. Clock the time in seconds required to burn 1 cubic foot of gas by checking the gas meter.
4. Insert the time required to burn one cubic foot of gas into the following formula and compute the input rate.

\[\frac{3600 \text{ (Sec. per Hr.)} \times \text{BTU/Cu. Ft.}}{\text{Time (Sec.)}} = \text{Input Rate} \]

For example:
Assume the BTU content of one cubic foot of gas is 1000, and that it takes 48 seconds to burn one cubic foot of gas.

\[\frac{3600 \times 1000}{48} = 75,000 \]

NOTICE: If the computation exceeds, or is less than 95% of the gas BTU/hr. input rating (see Table 1), adjust the gas pressure.

Adjust the gas pressure as follows:

1. NATURAL GAS: Best results are obtained when the unit heater is operating at its full rated input with the manifold pressure of 3.5 inches W.C. (0.9 kPa). Adjustment of the pressure regulator is not normally necessary since it is preset at the factory. However, field adjustment may be made as follows:
 a. Attach manometer at the pressure tap plug below the control outlet.
 b. Remove the regulator adjustment screw cap, located on the combination gas valve.
 c. With a small screwdriver, rotate the adjustment screw counterclockwise to decrease pressure, or clockwise to increase pressure.
 d. Replace regulator adjustment screw cap.

2. PROPANE GAS: An exact manifold pressure of 10.0 inches W.C. (2.5 kPa) must be maintained for proper operation of the unit heater. Follow steps “A” through “D” above.

3. The adjusted manifold pressure should not vary more than 10% from pressure specified in Table 4.

Table 4 - Main Burner Orifice Schedule*

<table>
<thead>
<tr>
<th>*</th>
<th>TYPE OF GAS</th>
<th>HEATING VALUE</th>
<th>MANIFOLD PRESSURE</th>
<th>NO. OF BURNER ORIFICES</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT IN 1000 BTU</td>
<td>NATURAL</td>
<td>PROPANE</td>
<td>3.5” W.C. (0.87kPA)</td>
<td>10” W.C. (2.49 kPA)</td>
</tr>
<tr>
<td>30</td>
<td>FT ?/HR ORIFICE DRILL</td>
<td>28</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>45</td>
<td>FT ?/HR ORIFICE DRILL</td>
<td>42</td>
<td>18</td>
<td>3</td>
</tr>
<tr>
<td>60</td>
<td>FT ?/HR ORIFICE DRILL</td>
<td>56</td>
<td>24</td>
<td>4</td>
</tr>
<tr>
<td>75</td>
<td>FT ?/HR ORIFICE DRILL</td>
<td>70</td>
<td>30</td>
<td>5</td>
</tr>
</tbody>
</table>

*This schedule is for units operating at normal altitudes of 2000 ft. (610m) or less.

When installed in Canada, any references to deration at altitudes in excess of 2000 ft. (610 m) are to be ignored. At altitudes of 2000 to 4500 ft. (610 to 1372m), the unit heaters must be orificed to 90% of the normal altitude rating, and be so marked in accordance with ETL certification.

TUBULAR UNIT HEATER HIGH ALTITUDE DERATION

This Tubular Unit Heater has been manufactured utilizing standard burner orifices and a normal manifold pressure setting as per the specifications shown on your unit rating plate.

All unit deration must be done through field adjustments by a qualified technician. Once the proper adjustments are made in the field, attach label #J17-06459 to the unit, and record adjusted manifold pressure, altitude of the unit installation and the technician's name and date on the label using a permanent marker. See Table 5.

Refer to Installation Instruction section on Adjustments-Gas Input Rate for adjusting the manifold pressure.
MAINTENANCE

PERIODIC SERVICE

NOTICE: The heater and vent system should be checked once a year by a qualified technician.

All Maintenance/Service information should be recorded accordingly on the Inspection Sheet provided in this manual.

WARNING Open all disconnect switches and disconnect all electrical and gas supplies and secure in that position before servicing unit. Failure to do so may result in personal injury or death from electrical shock.

WARNING Gas tightness of the safety shut-off valves must be checked on at least an annual basis.

To check gas tightness of the safety shut-off valves, turn off the manual valve upstream of the appliance combination control. Remove the 1/8 inch pipe plug on the inlet side of the combination control and connect a manometer to that tapping. Turn the manual valve on to apply pressure to the combination control. Note the pressure reading on the manometer, then turn the valve off. A loss of pressure indicates a leak. If a leak is detected, use a soap solution to check all threaded connections. If no leak is found, combination control is faulty and must be replaced before putting appliance back in service.

Should maintenance be required, perform the following inspection and service routine:

1. Inspect the area near the unit to be sure that there is no combustible material located within the minimum clearance requirements listed in this manual.
 WARNING Under no circumstances should combustible material be located within the clearances specified in this manual. Failure to provide proper clearance could result in personal injury or equipment damage from fire.

2. Turn off the manual gas valve and electrical power to the unit heater.

3. Remove service panel.

4. To clean or replace the burners, remove the four screws holding the manifold to the burner box and pull the manifold back slightly to disengage the orifices from the burners. Remove each burner by holding it against the tab on the burner bracket, then rotate the inlet end of the burner toward the fan side of the unit and slide the burner off the tabs. See Figure 10.

5. With the burners removed, wire brush the inside surfaces of the heat exchanger.

6. Remove any dirt, dust, or other foreign matter from the burners using a wire brush and/or compressed air. Ensure that all parts are unobstructed.

7. Reassemble the unit heater by replacing all parts in reverse order.

8. Complete the appropriate unit startup procedure as given in the “Operation” section of this manual. (See lighting instruction on the unit nameplate).

9. Check the burner adjustment.

10. Check all gas control valves and pipe connections for leaks.

11. Check the operation of the automatic gas valve by lowering the setting of the thermostat, stopping the operation of the gas unit heater. The gas valve should close tightly, completely extinguishing the flame on the burners.

12. Inspect and service motor/fan assembly. To maintain efficient air flow, inspect and clean the fan blades and guard to prevent buildup of foreign matter.

13. Check lubrication instructions on motor. If oiling is required, add 3 or 4 drops of electric motor oil as follows:
 a. Light Duty - After 3 years or 25,000 hours of operation.
 b. Average Duty - Annually after 3 years or 8,000 hours of operation.
 c. Heavy Duty - Annually after 1 years or at least 1500 hours of operation.

CAUTION Never over oil the motor or premature failure may occur!

14. Check and test the operational functions of all safety devices supplied with your unit.

Table 4

<table>
<thead>
<tr>
<th>Altitude (Feet)</th>
<th>NATURAL GAS</th>
<th>PROPANE (LP) GAS</th>
<th>NATURAL GAS</th>
<th>PROPANE (LP) GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,000</td>
<td>948</td>
<td>3.2</td>
<td>2,278</td>
<td>10.0</td>
</tr>
<tr>
<td>2,500</td>
<td>931</td>
<td>3.2</td>
<td>2,237</td>
<td>10.0</td>
</tr>
<tr>
<td>3,000</td>
<td>914</td>
<td>3.2</td>
<td>2,196</td>
<td>10.0</td>
</tr>
<tr>
<td>3,500</td>
<td>897</td>
<td>3.1</td>
<td>2,156</td>
<td>10.0</td>
</tr>
<tr>
<td>4,000</td>
<td>881</td>
<td>3.1</td>
<td>2,116</td>
<td>10.0</td>
</tr>
<tr>
<td>4,500</td>
<td>865</td>
<td>3.1</td>
<td>2,077</td>
<td>9.9</td>
</tr>
<tr>
<td>5,000</td>
<td>849</td>
<td>3.0</td>
<td>2,039</td>
<td>9.7</td>
</tr>
<tr>
<td>5,500</td>
<td>833</td>
<td>3.0</td>
<td>2,000</td>
<td>9.6</td>
</tr>
<tr>
<td>6,000</td>
<td>818</td>
<td>2.9</td>
<td>1,964</td>
<td>9.5</td>
</tr>
<tr>
<td>6,500</td>
<td>802</td>
<td>2.9</td>
<td>1,927</td>
<td>9.3</td>
</tr>
<tr>
<td>7,000</td>
<td>787</td>
<td>2.8</td>
<td>1,891</td>
<td>9.2</td>
</tr>
<tr>
<td>7,500</td>
<td>771</td>
<td>2.8</td>
<td>1,853</td>
<td>9.0</td>
</tr>
<tr>
<td>8,000</td>
<td>756</td>
<td>2.8</td>
<td>1,817</td>
<td>8.9</td>
</tr>
<tr>
<td>8,500</td>
<td>741</td>
<td>2.7</td>
<td>1,781</td>
<td>8.7</td>
</tr>
<tr>
<td>9,000</td>
<td>726</td>
<td>2.6</td>
<td>1,745</td>
<td>8.5</td>
</tr>
<tr>
<td>9,500</td>
<td>711</td>
<td>2.6</td>
<td>1,709</td>
<td>8.3</td>
</tr>
<tr>
<td>10,000</td>
<td>696</td>
<td>2.5</td>
<td>1,673</td>
<td>8.1</td>
</tr>
</tbody>
</table>

*Notes:
1. Consult local utility for actual heating value.
2. Tables based on heating value of 1,050 BTU/Cu. ft. at sea level.
<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>POSSIBLE CAUSE(S)</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Flame pops back.</td>
<td>1. Burner orifice to small.</td>
<td>1. Check with local gas supplier for proper orifice size and replace. Refer to “Operation”.</td>
</tr>
<tr>
<td>B. Noisy Flame.</td>
<td>1. Irregular orifice causing whistle or resonance. 2. Excessive gas input.</td>
<td>1. Replace orifice. 2. Test and reset manifold pressure.</td>
</tr>
<tr>
<td>C. Yellow tip flame (some yellow tipping on LP gas is permissible).</td>
<td>1. Clogged main burners. 2. Misaligned orifices. 3. Insufficient combustion air. 4. Possibly over fired.</td>
<td>1. Clean main burner ports. 2. Replace manifold assembly. 3. Insufficient combustion air. 4. Check gas input and manifold pressures.</td>
</tr>
<tr>
<td>E. Gas odor.</td>
<td>1. Shut off gas supply immediately! 2. Leaking gas test port on valve. 3. Blocked heat exchanger. 4. Blocked draft hood. 5. Negative pressure in the building.</td>
<td>1. Inspect all gas piping and repair. 2. Check to ensure gas test ports are seated. 3. Clean heat exchanger/flue. 4. Clean flue collector. 5. See “Installation”.</td>
</tr>
<tr>
<td>F. Delayed ignition.</td>
<td>1. Improper ground. 2. Bad or broken spark cable. 3. Faulty control. 4. Pressure regulator set too low. 5. Main burner orifices dirty. 6. Improper venting.</td>
<td>1. Check grounding wires and spark bracket connections. 2. Inspect spark cable connections and cuts. 3. Check to ensure spark is energized after pre purge period. 4. Test and reset manifold pressure refer to "Operations". 5. Clean or replace orifices. 6. Refer to “Installation”.</td>
</tr>
<tr>
<td>G. Failure to ignite.</td>
<td>1. Gas supply is off. 2. No power supply to unit. 3. Thermostat not calling. 4. Defective high limit. 5. Defective drafter prove switch. 6. Loose wiring. 7. Improper ground. 8. Improper thermostat or transformer wiring.</td>
<td>1. Open all manual valves “check for leaks”. 2. Turn on power supply, check fuses and replace if bad. 3. Turn up thermostat. Check for 24v on terminals R and W1 on terminal strip. 4. Check switch for continuity if open with no heat present, replace. 5. Check switch operation to ensure switch closes after drafter purge period. If it does not make/check tubing connections/ blockage. 6. Check all wiring per diagram. 7. Check all ground wires and connections. 8. Check both, for wiring according to diagram; check for 24V at gas valve terminals during trial for ignition period if present and valve does not open. Replace valve.</td>
</tr>
<tr>
<td>SYMPTOMS</td>
<td>POSSIBLE CAUSE(S)</td>
<td>CORRECTIVE ACTION</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
</tbody>
</table>
| I. Burners will not shut off. | 1. Thermostat located incorrectly.
2. Improper thermostat wiring.
4. Defective sticking gas valve.
5. Excessive gas supply pressure. | 1. Relocate thermostat away from outside wall or drafts.
2. Check thermostat circuit for open and close on terminal strip on heater “R” and “W”.
3. Check thermostat circuit for shorts “staples piercing wires”.
4. Check for 24v on gas valve terminals when thermostat is not calling.
5. Refer to “Installation”. |
| J. Rapid burner cycling. | 1. Loose electrical connections at thermostat or gas valve.
2. Excessive thermostat heat anticipator setting.
3. Unit cycling on high limit.
4. Poor thermostat location. | 1. Tighten all electrical connections.
2. Adjust heat anticipator setting for longer cycles. Refer to “Electrical Connection”.
3. Check for proper air supply across heat exchanger and proper gas supply.
4. Relocate thermostat. |
| K. Noisy power ventor. | 1. Power ventor wheel loose.
2. Power ventor wheel is dirty.
3. Power ventor wheel is rubbing on the housing. | 1. Replace or tighten.
2. Clean power ventor wheel.
3. Realign power ventor wheel. |
| L. Fan will not run. | 1. Loose electrical connections.
2. Defective motor or overload.
3. Defective control board. | 1. Check and tighten wires on fan circuit.
2. Test for 115v on terminal ACB Heat and “L2” if voltage is present replace motor.
3. Test for 115v on terminal ACB Heat and “L2” on the control board, if voltage is not present 45 seconds after trial for ignition replace board. |
| M. Fan motor turns on and off while burner is operating. | 1. Motor overload protection is tripping.
2. Loose wiring or connection.
3. Control board is defective. | 1. Check motor amps against motor name plate, check voltage, replace if found defective.
2. Check for 115v between motor leads.
3. Check terminal ACB Heat for voltage if voltage not constant, replace board. |
| N. Fan will not stop. | 1. Control Board is in flame failure mode.
2. Fan improperly wired.
3. Defective board. | 1. Turn 115v power off to the unit, wait 10 seconds and reapply voltage to the unit.
2. Check wiring of fan circuit to wiring diagram.
3. If unit is not calling for heat and board is not in a flash code mode, replace board. |
| O. Not enough heat. | 1. Incorrect gas input.
2. Heater undersized.
3. Thermostat malfunction.
4. Heater cycling on limit.
5. Incorrect orifice sizes. | 1. Refer to “Operation”.
2. Is the heater output sized correctly for heat loss of the space. Has the space been enlarged.
3. Check thermostat circuit, 24v on terminals “R” and “W” on terminal strip.
4. Check air movement across heat exchanger. Check voltage and amps at the fan motor. Check gas input to ensure unit is not over fired. Check heat exchanger to ensure unit is not dirty.
5. Check orifice size, replace if undersized. |
| P. Too much heat. | 1. Unit is over fired.
2. Thermostat malfunction.
2. Check thermostat for operation, to ensure circuit open and closes.
3. Check wiring per diagram; check operation at the gas valve, look for a short in thermostat circuit. |
Table 5 - Tubular Propeller Troubleshooting Guide

<table>
<thead>
<tr>
<th>SYMPTOMS</th>
<th>POSSIBLE CAUSE(S)</th>
<th>CORRECTIVE ACTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q. Cold air is delivered during heater operation.</td>
<td>1. Incorrect manifold pressure or input. 2. Air throughput too high.</td>
<td>1. Refer to “Operation”. 2. Refer to “Operation”.</td>
</tr>
<tr>
<td>R. High limit tripping.</td>
<td>1. Unit is over fired. 2. Air flow is low. 3. Defective switch. 4. Defective control board.</td>
<td>1. Burner orifices may be too large, verify and replace. 2. Check for proper voltage, ensure fan blade is correct. 3. Check operation of switch, did the switch open when unit is running or is the switch open during start-up. 4. Check for 24v on line side of the high limit. Constant voltage should be recorded if not control board is suspect. Check flash code.</td>
</tr>
<tr>
<td>S. Power ventor will not run.</td>
<td>1. Loose wiring or connections. 2. Motor overload is tripped or bad motor. 3. Bad control board.</td>
<td>1. Check all wiring in the power vent circuit to ensure good connection, including “Neutral”. 2. Check for 115v between motor leads and check amp draw of motor. Replace if needed. 3. Check for continuous 115v on terminal “CBM Blower” and neutral during call for heat. If not present and all checks are normal, replace.</td>
</tr>
<tr>
<td>T. Power ventor turns on and off during operation.</td>
<td>1. Power ventor improperly wired. 2. Motor overload cycling or defective motor. 3. Defective control board.</td>
<td>1. Check power ventor circuit per wiring diagram. 2. Check motor voltage and amp draw to motor name plate, replace if motor found defective. 3. Check for continuous 115v on terminal “CMB Blower” during call for heat, replace board if found defective.</td>
</tr>
<tr>
<td>U. Power ventor will not stop.</td>
<td>1. Power ventor improperly wired. 2. Main burner did not light on call for heat. 3. Defective control board.</td>
<td>1. Check power ventor circuit per wiring diagram. 2. Heater is in lockout mode check flash code table for problem. 3. No flash codes present along with no call for heat, replace control board.</td>
</tr>
</tbody>
</table>
No Cycling or appliance power or thermostat call for heat since appliance failure has occurred.

WARNING

Line voltage power can cause product damage, severe injury or death. Only a trained experienced service technician should perform this troubleshooting.

1. Check the system thermostat to make sure it is calling for heat. (Do not cycle the thermostat on and off at this time.)

2. Remove the appliance burner compartment door. Do not interrupt power to the control board by opening any electrically interlocked panels.

3. Observe the LED indicator on the control board (a green LED labeled “OK” indicates system faults); check and repair system as noted in the chart to the right.

*NOTICE: Air flow proving switch and power ventor hose barbs must be free of any dust or debris at all times. Periodically check these openings and/or if any problems occur.

<table>
<thead>
<tr>
<th>LED STATUS</th>
<th>INDICATES</th>
<th>CHECK/REPAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slow Flash</td>
<td>Control OK, no call for heat.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Fast Flash</td>
<td>Control OK, call for heat present.</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Steady Off</td>
<td>Internal control fault, or no power.</td>
<td>1. Line voltage on terminals 120 and C on transformer. 2. Low voltage (24V) on terminals 24 and C on transformer. 3. 5 Amp fuse on circuit board.</td>
</tr>
<tr>
<td>Steady On</td>
<td>Control internal failure or bad ground.</td>
<td>1. Common side of transformer grounded to chassis. 2. Loose spark ignitor.</td>
</tr>
<tr>
<td>2 Flashes</td>
<td>In lockout from failed ignitions or flame losses.</td>
<td>1. Gas supply off or gas supply pressure too low. 2. Flame sense rod contaminated or loose wire. 3. Gas valve switch is off or wires are not connected. 4. Broken or cracked porcelain on flame probe or spark ignitor.</td>
</tr>
<tr>
<td>3 Flashes</td>
<td>Pressure Switch open with inducer on or closed with inducer off.</td>
<td>1. Obstructions or restrictions in appliance air intake or flue outlet are preventing proper combustion airflow. 2. Moisture or debris in tubing that connects pressure switch and draft inducer. 3. Airflow switch jumpered or miswired.</td>
</tr>
<tr>
<td>4 Flashes</td>
<td>Limit or rollout switch is open.</td>
<td>1. Open manual reset rollout switch. 2. Gas pressure too high, over fire condition. 3. Incorrect airflow due to blockage or motor not operating.</td>
</tr>
<tr>
<td>5 Flashes</td>
<td>Flame sensed while gas valve is off.</td>
<td>1. Flame probe miswired or shortened.</td>
</tr>
<tr>
<td>6 Flashes</td>
<td>On-board microprocessors disagree.</td>
<td>1. Thermostat is interfering with control board.</td>
</tr>
</tbody>
</table>
IDENTIFICATION OF PARTS

SEPARATED COMBUSTION TUBULAR 30-75 MBH UNIT SIZES

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vestibule Panel/Tube Ass’y (Heat Exchanger)</td>
</tr>
<tr>
<td>2</td>
<td>Burner Box Sub-Ass’y</td>
</tr>
<tr>
<td>3</td>
<td>Manifold</td>
</tr>
<tr>
<td>4</td>
<td>Inshot Burner</td>
</tr>
<tr>
<td>5</td>
<td>Main Burner Orifice Natural Gas or Propane (LP) Gas</td>
</tr>
<tr>
<td>6</td>
<td>Spark Ignitor</td>
</tr>
<tr>
<td>7</td>
<td>Spark Ignitor Bracket</td>
</tr>
<tr>
<td>8</td>
<td>Flame Sensor</td>
</tr>
<tr>
<td>9</td>
<td>Flame Sensor Bracket</td>
</tr>
<tr>
<td>10</td>
<td>Burner Bracket</td>
</tr>
<tr>
<td>11</td>
<td>Control Board</td>
</tr>
<tr>
<td>12</td>
<td>Transformer, 50 VA, 115/24V.</td>
</tr>
<tr>
<td>13</td>
<td>Air Pressure Switch</td>
</tr>
<tr>
<td>14</td>
<td>Terminal Block Plate</td>
</tr>
<tr>
<td>15</td>
<td>High Limit Switch w/ Mounting Bracket</td>
</tr>
<tr>
<td>16</td>
<td>Fan Motor</td>
</tr>
<tr>
<td>17</td>
<td>Inlet Air Collar Ass’y</td>
</tr>
<tr>
<td>18</td>
<td>OSHA Fan Guard</td>
</tr>
<tr>
<td>19</td>
<td>Standard Fan</td>
</tr>
<tr>
<td>20</td>
<td>Fan Guard/Motor Mount Hardware Kit</td>
</tr>
<tr>
<td>21</td>
<td>Flue Collector</td>
</tr>
<tr>
<td>22</td>
<td>Power Venter (Drafter) Ass’y</td>
</tr>
<tr>
<td>23</td>
<td>Flue Collar Ass’y</td>
</tr>
<tr>
<td>24</td>
<td>Vinyl Tubing (Pressure Switch)</td>
</tr>
<tr>
<td>25</td>
<td>Power Venter Mounting Plate</td>
</tr>
<tr>
<td>26</td>
<td>Louver</td>
</tr>
<tr>
<td>27</td>
<td>Louver Spring</td>
</tr>
<tr>
<td>28</td>
<td>Burner Box Rear Panel</td>
</tr>
<tr>
<td>29</td>
<td>Service Panel</td>
</tr>
<tr>
<td>30</td>
<td>Hose Clamp</td>
</tr>
<tr>
<td>31</td>
<td>Top/Bottom Jacket Panel w/ Insulation</td>
</tr>
<tr>
<td>32</td>
<td>Front Jacket Panel</td>
</tr>
<tr>
<td>33</td>
<td>Rear Jacket Panel</td>
</tr>
<tr>
<td>34</td>
<td>Hanger</td>
</tr>
<tr>
<td>35</td>
<td>Inlet Air Hose</td>
</tr>
<tr>
<td>36</td>
<td>Tube Support Bracket</td>
</tr>
<tr>
<td>37</td>
<td>Metal Hole Plug</td>
</tr>
<tr>
<td>38</td>
<td>Large Grommet</td>
</tr>
<tr>
<td>39</td>
<td>Gas Valve Direct Spark</td>
</tr>
<tr>
<td>40</td>
<td>Pipe Union</td>
</tr>
<tr>
<td>41</td>
<td>Pipe Nipple</td>
</tr>
<tr>
<td>42</td>
<td>Spring</td>
</tr>
<tr>
<td>43</td>
<td>Pressure Tap Fitting</td>
</tr>
<tr>
<td>44</td>
<td>Pressure Tap Fitting Nut</td>
</tr>
<tr>
<td>45</td>
<td>Green Ground Screw</td>
</tr>
<tr>
<td>46</td>
<td>Burner Box View Port</td>
</tr>
<tr>
<td>47</td>
<td>Burner Box Inlet Air Panel</td>
</tr>
</tbody>
</table>

When replacing a flue collector, make sure that the flue collector box is sealed completely to the vestibule panel using RTV sealant.
IDENTIFICATION OF PARTS
SEPARATED COMBUSTION TUBULAR 30-75 MBH UNIT SIZES

Figure 12 - Propeller Parts

Figure 13 - Component Parts

NOTE: No rubber grommets are equipped with the 30 and 45 unit sizes.

Figure 14 - Internal Furnace Components

<table>
<thead>
<tr>
<th>Unit Size</th>
<th>Tube Quant.</th>
</tr>
</thead>
<tbody>
<tr>
<td>30 MBH</td>
<td>2</td>
</tr>
<tr>
<td>45 MBH</td>
<td>3</td>
</tr>
<tr>
<td>60 MBH</td>
<td>4</td>
</tr>
<tr>
<td>75 MBH</td>
<td>5</td>
</tr>
</tbody>
</table>

Figure 15 - Power Ventor Assembly

Heat Exchanger Assembly

Pressure Switch

Gas Valve
HOW TO ORDER REPLACEMENT PARTS

Please send the following information to your local representative: if further assistance is needed, contact the manufacturer's customer service department.
• Model Number
• Serial Number (if any)
• Part Description and Number as shown in Replacement parts Catalog

LIMITED WARRANTY
Separated Combustion Tubular Propeller Unit Heaters

1. The "Manufacturer" warrants to the original owner at original installation site that the above model Gas-Fired Heater ("the Product") will be free from defects in material or workmanship for (1) year from the date of shipment from the factory, or one and one-half (1-1/2) years from the date of manufacture, whichever occurs first. The Manufacturer further warrants that the complete heat exchanger, flue collector and burners be free from defects in material or workmanship for a period of five (5) years from the date of manufacture. If upon examination by the Manufacturer the Product is shown to have a defect in material or workmanship during the warranty period, the manufacturer will repair or replace, at its option, that part of the Product which is shown to be defective.

2. This limited warranty does not apply:
 a. if the product has been subjected to misuse or neglect, has been accidentally or intentionally damaged, has not been installed, maintained, or operated in accordance with furnished written instructions, or has been altered or modified in any way by any unauthorized person.
 b. to any expenses, including labor or material, incurred during removal or reinstallation of the Product
 c. to any damage due to corrosion by chemicals, including halogenated hydrocarbons, precipitated in the air
 d. to any workmanship of the installer of the Product

3. This limited warranty is conditional upon:
 a. advising the installing contractor, who in turn notify the distributor or manufacturer
 b. shipment to the Manufacturer of that part of the Product thought to be defective. Goods can only be returned with prior written approval of the Manufacturer. All returns must be freight prepaid.
 c. determination in the reasonable opinion of the Manufacturer that there exists a defect in material or workmanship

4. Repair or replacement of any part under this Limited Warranty shall not extend the duration of the warranty with respect to such repaired or replaced part beyond the stated warranty period.

5. THIS LIMITED WARRANTY IS IN LIEU OF ALL WARRANTIES, EITHER EXPRESS OR IMPLIED, AND ALL SUCH OTHER WARRANTIES, INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, ARE HEREBY DISCLAIMED AND EXCLUDED FROM THIS LIMITED WARRANTY. IN NO EVENT SHALL THE MANUFACTURER BE LIABLE IN ANY WAY FOR ANY CONSEQUENTIAL, SPECIAL, OR INCIDENTAL DAMAGES OF ANY NATURE WHATSOEVER, OR FOR ANY AMOUNTS IN EXCESS OF THE SELLING PRICE OF THE PRODUCT OR ANY PARTS THEREOF FOUND TO BE DEFECTIVE. THIS LIMITED WARRANTY GIVES THE ORIGINAL OWNER OF THE PRODUCT SPECIFIC LEGAL RIGHTS. YOU MAY ALSO HAVE OTHER RIGHTS WHICH MAY VARY BY JURISDICTION.

In the interest of product improvement, we reserve the right to make changes without notice.
GAS EQUIPMENT
START-UP

Customer ____________________________________ Job Name & Number ____________________________

PRE-INSPECTION INFORMATION
With power and gas off.

Type of Equip: Unit Heater
Serial Number ____________________________ Model Number ____________________________

Name Plate Voltage: _____________ Name Plate Amperage: _____________

Type of Gas: Natural LP Tank Capacity _______ lbs. Rating: ______ BTU @ ____ °F

 _______ kg _______ kw @ ____ °C

☐ Are all panels, doors, vent caps in place?
☐ Has the unit suffered any external damage? Damage ____________________________
☐ Does the gas piping and electric wiring appear to be installed in a professional manner?
☐ Has the gas and electric been inspected by the local authority having jurisdiction?
☐ Is the gas supply properly sized for the equipment?
☐ Were the installation instructions followed when the equipment was installed?
☐ Have all field installed controls been installed?
☐ Do you understand all the controls on this equipment? If not, contact your wholesaler or rep.

(DO NOT START this equipment unless you fully understand the controls.)

GENERAL
With power and gas off.

☐ Make certain all packing has been removed.
☐ Tighten all electrical terminals and connections.
☐ Check all fans & blowers for free movement.
☐ Check all controls for proper settings.

GAS HEATING
With power and gas on.

☐ Inlet gas pressure. _____ in. W.C. or _____ kPa
☐ Burner ignition.
☐ Manifold gas pressure. _____ in. W.C. or _____ kPa
☐ Cycle on HIGH LIMIT.
☐ Cycle and check all other controls not listed.
☐ Cycle by thermostat or operating control.

Remarks: __
__
__